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Abstract

In this project we look into how to recover spectrum from a noisy sample of the
true population covariance. Two algorithms are given, one for estimating mo-
ments, and the other for recovering spectrum from the estimated moments. Up-
perbound of the estimated spectrum is also derived in L1 and Wasserstein sense.

1 Introduction

Matrix completion and estimation from samples are very important tasks nowadays. For example,
in a recommendation system, like the one used by Netflix, we have a large matrix with rows repre-
senting the users, columns representing the movies, and each (i, j) entry represents the score user
i gives to movie j. Nonetheless, these matrices are usually very large to directly estimate, or in
some scenarios, we can only observe a noisy version of the matrices. Therefore, researchers want
to exploit the low-dimensional nature of such matrices (if exists), or reconstruct some features of
the original matrix from the observed one. The reconstructed features are usually eigenvalues, or
spectrum, which presents the vector of eigenvalues.

1.1 Setup and Goals

Consider dealing with multivariate distribution over Rd, represented by X(0, 1) with mean 0 and
variance 1. We assume X has boudned fourth moment β.
Define a real d × d matrix S, which is unobserved. Instead, we observe a noisy version Y = XS,
where X ∈ Rn×d, we draw each column X(·,i), ∀i ∈ n from distribution X(0, 1).
We want to estimate S>S, which is also known as the population covariance.

1.2 Overview

To achieve the goal of accurately estimating the spectrum of the original matrix by only observing
the noisy version, the researchers propose a method of moments, where we first estimate the first k
moments of the matrix through a cycle-counting approach, then we create a distribution based on
the estimated moments. Then we recover the spectrum from the hand-crafted distribution.
We would first see this recovered spectrum is close to the original spectrum in Wasserstein distance,
then we would see those two spectrums are also closed in L1 distance.

2 Estimating Moments

Let A be a n×n matrix, a k-cycle σ on A is defined to be a sequence of k integers bounded by [0.n]
and σ = (σ1 . . . σk). We consider closed walk here so let σk+1 = σ1.
Define a product Aσ =

∏k
i=1Aσi,σi+1

. Then we have the following fact:
Let σ be a k-cycle, X be a n × d matrix, where the column of X is drawn from a distribution with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

mean 0 and variance 1. Let T be a d × d real matrix, but unobserved. We want to estimate kth
moment of T , defined as Tr(T k), and E

[
(X>TX)σ

]
= Tr(T k) is an unbiased estimator of the

kth spectral moment of T .
To prove, simply expand the formula:

E
[
(X>TX)σ

]
= E

 k∏
i=1

∑
δi,γi∈[d]

Xδi,σi
Tδi,γi+1

Xγi+1,σi+1


=
∑
δk1 ,γ

k
1

E

[
k∏
i=1

Xδi,σi
Tδi,γi+1

Xγi+1,σi+1

]

=
∑
δk1

k∏
i=1

Tδi,δi+1

= Tr(T k)

As an example, let X,T be two 2× 2 matrices. Let σ = (1, 2) be a 2-cycle. Expanding the formula
above we have:

E
[
(X>TX)σ

]
= E

[
(X>TX)1,2 · (X>TX)2,1

]
= E[(X11T11X12 +X21T21X12 +X11T12X22 +X21T22X22)

· (X12T11X11 +X22T21X11 +X12T12X21 +X22T22X21)]

= T 2
11 + T12T21 + T 2

22

= Tr(T 2)

Even though this is an unbiased estimator, the variance of each k-cycle could be very large. To
reduce the variance, we could average over all k-cycles, but counting all k-cycles would be NP-hard.
Therefore, the researchers propose to only consider the increasing cycles.

2.1 Increasing Cycles

Define increasing k-cycle to be σ = (σ1 . . . σk) such that σ1 < σ2 < . . . < σk. Since the product
Aσ is a multiplication of Aσi,σi+1

, an increasing cycle essentially means the element we choose to
multiply in A has bigger row index than column index. In other words, we only consider the upper
triangular entries of A. Hence to calculate the kth moments from the increasing cycle, we pad the
lower-triangular and diagonal entries of matrix A in the first k − 1 copies:

Data: Y ∈ Rn×d
Result: kth spectral moment
Let A = Y Y >, G = Aup be the matrix in which we pad lower-triangular and diagonal entries

with 0.
Output Tr(G

k−1A)

d(nk)
Algorithm 1: Estimating the kth moment

The guarantee of variance is given by

Lemma 2.1

V ar(
1

|U |
∑
σ∈U

(X>TX)σ) = f(k)
max(dk−2, 1)

nk
Tr(T k)2

where f(k) = 212kk6kβk, β is the fourth moment of X , U is the set of all k-increasing-cycle.

3 Recover Spectrum from Moments

We would first create a discrete distribution based on the first k moments we calculate, via a linear
programming algorithm:
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Data: α̂: vector of k estimated moments; d: dimensionality of population variance; partition
x = (x0 . . . xt) on [0, b]; b: upperbound of population eigenvalue. Notice we can make
xi = iε where ε ≤ 1

max(n,d)

Result: Estimated spectrum λ̂1 . . . λ̂d
1. Let p+ be the distribution that solves the following linear programming:

minimize
p

|V p− α̂|1

subject to 1>p = 1,

p > 0

(1)

Where V ∈ Rk×t, Vij = xij .
2. Output spectrum λ̂1 . . . λ̂d where λ̂i = min(xj :

∑
l≤j p

+
l ≥

i
d+1 ).

Algorithm 2: Recover Spectrum from Moments

This algorithm first generate a discrete distribution, with a t partition. Notice we can equally partition
[0, b] with mesh ε ≤ 1

max(n,d) , then the number of partition t ≥ max(n, d).
Now given a fixed partition x, we need to assign each xi a probability mass. Notice the matrix V
represent the moment of x from 1 to k. In other words, the first row of V represents the first moment
of partition x, the second row represents the second moment, so on and so forth. p in the linear
programming is a probability vector, it’s straightforward to see that the minimizer p+ minimizes
the L1 distance between the first k moments of p and the estimated first k moments α̂ of the true
distribution.
As the last step, output the ith-quantile of the estimated distribution p+ as the estimated spectrum.

4 Upperbound on the Recovered Spectrum

We would first show that the estimated distribution p+, and the true distribution p, is closed in
Wasserstein distance. Then we show that the L1 distance is also close.

4.1 Wassserstein Distance

Wasserstein distance, also known as the earthmover distance, measures the minimum cost of moving
one probability distribution p to match another distribution q. It is defined as following:

W1(p, q) = sup
f :1−Lipshitz

∫
f(x)(p(x)− q(x))dx

An important lemma for the derivation of upperbound is that

W1(p, q) ≤ C
b− a
k

+ g(k)(b− a)‖α− β‖2

where α and β are the first k moments of distribution p and q respectively, C is a constant, and
g(k) = c′3k for another constant C ′.
The outline of the proof is:

1. Show that the L1 distance between α+ and α is bounded.

2. Show that the L2 distance between α+ and α is bounded.

3. Show that the Wasserstein distance between α+ and α is bounded use the above lemma.

4.1.1 Upperbound on L1 Distance

Recall Lemma 2.1, we have an upperbound on V ar(α̂). Notice that α is a fixed constant vector
without randomness, hence V ar(α̂) = V ar(α̂− α).
Meanwhile, as shown in section 2, each k-cycle is an unbiased estimator of the kth moment αk.
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Hence E
[
‖α̂− α‖2

]
= V ar(α̂ − α). We also have inequality E [X]

2 ≤ E
[
X2
]
, for any random

variable X . This gives us the following bound:

E [‖α̂− α‖1] =
k∑
i=1

E [|α̂i − αi|]

≤
k∑
i=1

E
[
(α̂i − αi)2

]
=

k∑
i=1

V ar(α̂i − αi)

=

k∑
i=1

f(i)
max(di/2−1, 1)

ni/2
bi

where f(i) = 26ii3iβi/2, b is the upperbound on eigenvalue of matrix S in our setup. Compare this
upperbound with the inequality in lemma 2.1. You can see it is simply a linear combination of the
square root of the variance.
Notice in the linear programming 2, our partition x may not align with α̂ perfectly. Instead, x is
constructed by making xi = iε, meaning we round α̂ to its nearest integer multiple of ε. Also notice
partition x covers [0, b], so the largest deviation for the rounding of the ith moment is (b+ ε)i − bi,
since (·)i is a monotone increasing function with increasing derivative as the parameter increasing
(when i is positive).
Hence by triangle inequality:

E
[
‖α+ − α‖1

]
≤ E

[
‖α+ − α̂‖1

]
+ E [‖α̂− α‖1] ≤ 2E [‖α̂− α‖1] +

k∑
i=1

(
(b+ ε)i − bi

)
4.1.2 Upperbound on L2 Distance

Notice the inequality: √
a2 + b2 ≤ |a+ b|

Hence we can upperbound L2 distance by L1 distance:

E
[
‖α+ − α‖2

]
≤ E

[
‖α+ − α‖1

]
≤ 2E [‖α̂− α‖1] +

k∑
i=1

(
(b+ ε)i − bi

)
≤ 2

(
k∑
i=1

f(i)
max(di/2−1, 1)

ni/2
bi + (b+ ε)i − bi

)

≤ 2k

(
f(k)

2k/2−1

nk/2
bk + f(1)

b

n1/2
+ 2k(bk−1ε)

)
We use triangle inequality to expand the L1 distance. In the last inequality, f(k) 2

k/2−1

nk/2 bk accounts
for the case when di/2−1 > 1 and f(1) b

n1/2 accounts for the case when di/2−1 ≤ 1. 2k(bk−1 is
attained by expanding (b + ε)k − bk, there are in total 2k terms after the expansion, and the largest
one is bk, which cancels with −bk. The second largest on is bk−1ε, which upperbounds all other
terms.

4.1.3 Upperbound on Wasserstein Distance

We need the following two facts:

Fact 4.1 Let two sorted vectors a = (a1, . . . , ad) and b = (b1, . . . , bd). Let distribution pa represent
a discrete distribution with weight 1/d on each ai ∈ a, similarly for pb. Then:

|a− b|1 = d ·W1(pa, pb)
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Fact 4.2 Let distribution p be supported on [a, b]. Let distribution p′ be a discrete distribution with
mass 1/d on each d of (d+ 1)-quantile of distribution p. Then

W1(p, p
′) ≤ b− a

d

Hence we can bound the Wasserstein distance, let p+ be the distribution produced by Algorithm 2,
let p+quant be the distribution with equal pointed mass 1/d on each of (d+ 1)-quantile of p+:

W1(p
+
quant, p) ≤W1(p

+
quant, p

+) +W1(p
+, p)

≤ b

d
+ b(

C

k
+ g(k)‖α+ − α‖2)

W1(p
+
quant, p

+) is bounded according to fact 4.2. W1(p
+, p) is bounded in Section 4.1.2. Using

fact 4.1, we can then bound the spectrum.

5 Wasserstein Distance and L2 Distance

In Section 4.1 we mention an important bound on Wasserstein distance:

W1(p, q) ≤ C
b− a
k

+ g(k)(b− a)‖α− β‖2

where α and β are the first k moments of distribution p and q respectively, C is a constant, and
g(k) = c′3k for another constant C ′.
We would prove this inequality (relaxed version) via a polynomial approximation technique.
Suppose distribution p and q have matched first k moments. Then any polynomial P with degree at
most k, we have ∫

P (x)(p(x)− q(x))dx = 0

Let Pf be a polynomial with degree at most k. Use Pk to approximate 1-Lipschitz function f , we
have∫

f(x)(p(x)− q(x))dx =

∫
|f(x) + Pf (x)− Pf (x)|(p(x)− q(x))dx

≤
∫
|Pf (x)− f(x)|(p(x)− q(x))dx+

∫
Pf (x)(p(x)− q(x))dx

≤
∫
|Pf (x)− f(x)|p(x)dx+

∫
|Pf (x)− f(x)|q(x)dx

≤ 2‖f − Pf‖∞
The first inequality is just triangular inequality. Notice

∫
Pf (x)(p(x) − q(x))dx = 0 since p and q

have matched first k moments. The second inequality comes from the fact that:∫
|f + g|dx ≤

∫
|f |dx+

∫
|g|dx

and the last inequality is derived from the definition of infinity norm.

Fact 5.1 Let g be a k+1 differentiable function on [a,b], there exists Pg with at most degree k such
that

‖g(x)− Pg(x)‖∞ ≤ (
b− a
2

)k+1max(gk+1(x))

2k(k + 1)!

Although our function f is Lipschitz, this doesn’t guarantee the existence or boundedness of higher
derivative. To compensate for this, we need another function fs such that ‖f − fs‖∞ is small, while
fs has bounded higher derivatives. Naturally, we can find another function h that has small higher
derivatives, and convolutes with f : fs = f ∗ h. By the definition of convolution, we have:

(fs)
(k+1)(x) = (f ∗ h(k+1))(x)

5
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Consider function

b(y) =

{
e
− y2

1−y2 |y| < 1

0 otherwise

We will let the convoluted function h = cb̂(cy), where b̂(y) is the Fourier transform of b(y), and c
is a constant of our choice. Properties of b̂ include ‖b̂(k)‖1 = O(1/k) and b(k)‖∞ = O(1).
Let fs = cb̂(cy) ∗ f . By triangular inequality:∫

f(x)(p(x)− q(x))dx ≤ 2‖f − Pf‖∞ ≤ 2‖f − fs‖∞ + 2‖fs − Pf‖∞

For the first term:

|f(x)− fs(x)| = |f(x)− ∈ f(x− t)b̂c(t)dt|

= |f(x)(1−
∫
b̂c(t)dt) +

∫
(f(x)− f(x− t))b̂c(t)|

≤
∫
|tb̂c(t)dt|

= O(1/c)

Notice that
∫
b̂c(t)dt = 1., so the first term in the second line is 0. Since f is 1-Lipschitz:

|f(x)− f(x− t)| ≤ |x− x+ t| = t

The last inequality is given by [1].
For the second term, bound the k + 1 derivative of fs:

|(fs)(k+1)|∞ = ck+1|(f ∗ (b̂(k+1))c)(x)|∞
≤ ck+1|f |∞|b̂(k+1)|1

= O(
b− a
2

ck+1)

where the first line is the definition of derivative of convolutions, the second line is Cauchy-Schwartz,
and the third line is derived from the properties of f and b̂.
Then by Fact 5.1:

‖fs − Pf‖∞ ≤ (
b− a
2

)k+1max(gk+1(x))

2k(k + 1)!

= O

(
(
b− a
2

)k+2 ck+1

2k(k + 1)!

)
Choose c = k

b−a , we will get the desired bound on Wasserstein distance.
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